Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal UB AgroSup CNRS


GEE Christelle

GEE Christelle
Director / Teacher
Department : GESTAD
Team : Agroequipments
Email :
Phone number :
Fax :


Depuis 2016 :

  • J.A. Vayssade, G. Jones, J.N. Paoli  and Ch. Gée,2020. Two-step multi-spectral registration via key-point detector and gradient similarity. Application to agronomic scenes for proxy-sensing. 15th International Joint Conference on computer Vision, Imaging and Computer Graphics Theory and Applications  (VISIGRAPP).  2729 febuary – Valletta - Malte.
  • J. Merienne, Annabelle Larmure, Christelle Gée. Preliminary study for weed biomass prediction combining visible images with a plant-growth model. Precision Agriculture, Springer Verlag, 2019, pp.597-603. ⟨10.3920/978-90-8686-888-9_74⟩. ⟨hal-02183087⟩
  • Christelle Gée, Emmanuel Denimal, N. Boulard, Annabelle Larmure. Estimation de l’indice foliaire et de la biomasse du blé et des adventices par imagerie visible et machine learning : vers un nouvel indicateur non destructif de la compétition culture-adventices ?. 24e Conférence du COLUMA : Journées internationales sur la lutte contre les mauvaises herbes, Dec 2019, Orléans, France. ⟨hal-02430097⟩
  • Fanny Vuillemin, Jl. Lucas, M. Hawndi, Olivier Mangenot, David Colin, et al.. Développement opérationnel en grandes cultures semées en ligne d’une rampe de pulvérisation grande largeur localisée sur le rang. 24e Conférence du COLUMA : Journées internationales sur la lutte contre les mauvaises herbes, Dec 2019, Orléans, France. ⟨hal-02430336⟩
  • Fanny Vuillemin, Jl. Lucas, Olivier Mangenot, C. Chalon, F. Marechal, et al.. Spot spraying in oilseeds and protein crops. 12th European Conference on Precision Agriculture, Jul 2019, Montpellier, France. ⟨hal-02420551⟩
  • Fanny Vuillemin, Jl. Lucas, Olivier Mangenot, C. Chalon, F. Marechal, et al.. Spot spraying in oilseeds and protein crops. 11th European Conference on Precision Agriculture, 3rd AXEMA-EurAgEng Conference, Feb 2019, Villepinte, France. ⟨hal-02068579⟩
  • Jehan-Antoine Vayssade, Christelle Gée, Gawain Jones, Jean-Noël Paoli. Approche multicritère pour la caractérisation des adventices par imagerie. Journée des doctorants UMR Agroécologie, Apr 2019, Dijon, France. ⟨hal-02380208⟩
  • J. Merienne, Annabelle Larmure, Christelle Gée. Digital tools for a biomass prediction from a plant-growth model. Application to a weed control in wheat crop. 3rd AXEMA-EurAgEng Conference, Feb 2019, Villepinte, France. ⟨hal-02068549⟩
  • Christelle Gée, Gawain Jones, Thibault Maillot, Jean-Noël Paoli, Sylvain Villette. Chapitre 2.6: Le désherbage de précision. Bruno Chauvel. Gestion durable de la flore adventice des cultures, Quae, 2018, 978-2-7592-2818-8. ⟨hal-01827669⟩
  • Marine Louargant, Gawain Jones, Romain Faroux, Jean-Noël Paoli, Thibault Maillot, et al.. Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information. Remote Sensing, MDPI, 2018, 10 (5), ⟨10.3390/rs10050761⟩. ⟨hal-01802760⟩
  • Marine Louargant, Sylvain Villette, Gawain Jones, N. Vigneau, Jean-Noël Paoli, et al.. Weed detection by UAV: simulation of the impact of spectral mixing in multispectral images. Precision Agriculture, Springer Verlag, 2017, 18 (6), pp.932 - 951. ⟨10.1007/s11119-017-9528-3⟩. ⟨hal-01744077⟩
  • Marie-Aure Bourgeon, Jean-Noël Paoli, Christelle Gée, Christophe Monget, Sébastien Debuisson. De l’imagerie pour caractériser la vigne. Quelles perspectives pour la profession ?. Vigneron Champenois, 2017, janvier 2017, pp.21-29. ⟨hal-01605446⟩
  • Thibault Maillot, Gawain Jones, Sylvain Villette, Jean-Noël Paoli, Christelle Gée, et al.. Impact sur le long terme d'une pulvérisation localisée sur la flore adventice. Une étude de Simulation. Séminaire de Restitution à mi-parcours du Projet de Recherche ANR CoSAC, Jan 2017, Paris, France. 85 p. ⟨hal-01607952⟩
  • Sylvain Villette, Christelle Gée. Intra-row weed detection in wheat at early growing stage using imaging system. 11. European Conference on Precision Agriculture (ECPA2017), Jul 2017, Édimbourg, United Kingdom. ⟨hal-01606818⟩
  • Christelle Gée. Analyse des mécanismes impliqués dans la détection automatisée des adventices. Séminaire de Restitution à mi-parcours du Projet de Recherches ANR CoSAC, Jan 2017, Paris, France. 85 p. ⟨hal-01607055⟩
  • Marine Louargant, Corentin Chéron, Nathalie Vigneau, Gawain Jones, Sylvain Villette, et al.. Aerial multispectral imagery for site specific weed management. 1. AXEMA-EurAgEng Conference, Feb 2017, Villepinte, France. pp.30-36. ⟨hal-01606796⟩
  • Jean-Noël Paoli, Piernavieja H., Gawain Jones, Sylvain Villette, Thibault Maillot, et al.. Towards the estimation of vole damage on grassland by aerial multispectral imaging. 11. European Conference on Precision Agriculture (ECPA2017) , Jul 2017, Edimbourg, United Kingdom. 2017. ⟨hal-01744137⟩
  • Marie-Aure Bourgeon, Christelle Gée, S. Debuisson, Sylvain Villette, Gawain Jones, et al.. « On-the-go » multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices. Precision Agriculture, Springer Verlag, 2016, 18 (3), pp.293 - 308. ⟨10.1007/s11119-016-9489-y⟩. ⟨hal-01735026⟩
  • Marie-Aure Bourgeon, Jean-Noël Paoli, Gawain Jones, Sylvain Villette, Christelle Gée. Field radiometric calibration of a multispectral on-the-go sensor dedicated to the characterization of vineyard foliage. Computers and Electronics in Agriculture, Elsevier, 2016, 123, pp.184 - 194. ⟨10.1016/j.compag.2016.02.019⟩. ⟨hal-01735042⟩
  • Thibault Maillot, Christelle Gée, Benoit Gobin, Sylvain Villette, Jean-Baptiste Vioix, et al.. I-Weed robot : un outil pour l'étude de population de plantes adventices. 23. Conférence du COLUMA - Journées Internationales sur la Lutte contre les Mauvaises Herbes, Dec 2016, Dijon, France. pp.191-199. ⟨hal-01607014⟩

Principaux contrats :


Entre 2007-2012 :

  • Villette S.,  Piron E., Miclet D., Martin R.,  Jones G., Paoli J.N.,  Gée C., 2012 How mass flow and rotational speed affect fertiliser centrifugal spreading: Potential interpretation in terms of the amount of fertiliser per vane, Biosystem Engineering Journal, Vol. 111(1), January 2012, Pages 133–138
  • Villette S., E. Piron, R. Martin, D. Miclet, M. Boilletot, Ch. Gée, 2010-Measurement of an equivalent friction coefficient to characterise the behaviour of fertilisers in the context of centrifugal spreading. Precision Agriculture Vol. 11, N°6 p. 664-683, 2010. IF: 1,3
  • Jones G., Gée Ch.,Villette S., Truchetet F., 2010. Validation of a crop field modeling to simulate agronomic images. Optics Express, Vol 18(10), p. 10694-10703. doi:10.1364/OE.18.010694.- IMPACT FACTOR = 3.88
  • Jones G., Gée Ch., Truchetet F., 2009. Assessment of an inter-row Weed Infestation Rate on simulated agronomic images by image processing .Computers and Electronics in Agriculture , Vol 67 p.43-50
  • Bossu J., Gée Ch., Jones G., Truchetet F., 2009. Wavelet transform to discriminate between crop and weed in perspective agronomic images. Computers and Electronics in Agriculture Vol 65(1) p.133-143
  • Jones G., Gée Ch., Truchetet F., 2009. Modelling agronomic images for weed detection. Application to the comparison of crop/weed discrimination algorithm performances. Precision Agriculture Journal Vol 10 (1) p.1-15.
  • Bossu J., Gée Ch., Truchetet F., 2007. Development of a machine vision system for a real time precision sprayer. Electronic Letters on Computer Vision and Image Analysis Vol 7(3):54-66