Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal UB AgroSup CNRS



Maître de Conférences CNU 64
Pôle : IPM
Equipe/Thème : Immunité et signalisation
Courriel :
Tel :
Fax :

Curriculum vitae

2010-present: Lecturer in Biochemistry, University of Burgundy, Dijon
 2009-2010: Postdoc at the Dept. of Plant Biology, University of Fribourg, Switzerland
 2008: PhD Thesis in Biochemistry, Cellular and Molecular Biology, University of Burgundy, Dijon
 2005: Master of Science Degree level 2 in Biochemistry, Cellular and Molecular Biology, University of Burgundy, Dijon

Activités de recherche

Identification of genes regulated by nitric oxide (NO) or proteins modified by S-nitrosylation in response to (a)biotic challenges
 Origin and role of NO in plant defense reactions against pathogens or in response to abiotic stresses
 Role of NO in iron homeostasis and in response to cadmium treatment
 Interplays between iron homeostasis and the priming mechanisms induced by beta-aminobutyric acid (BABA)
 Role of the pyoverdin siderophores produced by Pseudomonas fluorescens in plant defense reactions

Activités d’enseignement

Biochemistry courses in both the bachelor and master study programmes,in particular:
 - general biochemistry (structure of lipids, proteins, sugars and nucleic acids; replication; transcription; traduction) and enzymology (L1 and L2 levels)
 - Bioenergetics (L3 level)
 - Techniques used in analyses: gas-liquid (GC) chromatography, size-exclusion chromatography, protein electrophoresis (L3 level), High-Performance Liquid Chromatography (HPLC), spectrophotometry, fluorimetry (M1 level)

Mots clés

A. thaliana, nitric oxide (NO), plant defense reactions, pathogens, iron homeostasis, siderophores, priming


Koen E., Trapet P., Brulé D., Kulik A., Klinguer A., Atauri-Miranda L., Meunier-Prest R., Boni G., Glauser G., Mauch-Mani B., Wendehenne D. and Besson-Bard A. (2014) β-aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: Link with iron homeostasis. Molecular Plant Microbe Interactions, 27: 1226-1240.
 Lamotte O., Bertoldo J.B., Besson-Bard A., Rosnoblet C., Aimé S., Hichami S., Terenzi H. and Wendehenne D. (2014) Protein S-nitrosylation: specificity and identification strategies in plants. Frontiers in Chemistry, 2:114.
 Trapet P., Kulik A., Lamotte O., Jeandroz S., Bourque S., Nicolas-Francès V., Rosnoblet C., Besson-Bard A. and Wendehenne D. (2014) NO signaling in plant immunity: A tale of messengers. Phytochemistry, doi: 10.1016/j.phytochem.2014.03.015.
 Koen E.*, Besson-Bard A.*, Duc C., Astier J., Gravot A., Richaud P., Lamotte O., Boucherez J., Gaymard F. and Wendehenne D. (2013) Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Science, 209: 1-11. *co-first authors
 Jeandroz S., Lamotte O., Astier J., Rasul S., Trapet P., Besson-Bard A., Bourque S., Nicolas-Francès V., Wei M., Berkowitz G.A. and Wendehenne D. (2013) There's more to the picture than meets the eye: nitric oxide cross-talk with Ca2+ signaling. Plant Physiology, 163: 459-470.
 Koen E., Lamotte O., Besson-Bard A., Bourque S., Nicolas-Francès V., Jeandroz S. and Wendehenne D. (2013) Nitric oxide is a major player in plant immune system. Médecine/Sciences (Paris), 29: 309-316.
 Koen E., Szymańska K., Klinguer A., Dobrowolska G., Besson-Bard A. and Wendehenne D. (2012) Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Signaling & Behavior, 7.
 Astier J., Besson-Bard A., Lamotte O., Bertoldo J., Bourque S., Terenzi H. and Wendehenne D. (2012) Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ATPase CDC48, a target for S-nitrosylation in cryptogein signaling in tobacco cells. Biochemical Journal, doi:10.1042/BJ20120257.
 Astier J., Kulik A., Koen E., Besson-Bard A., Bourque S., Jeandroz S., Lamotte O. and Wendehenne D. (2012) Protein S-nitrosylation: What's going on in plants? Free Radical Biology & Medicine, 53: 1101-1110.
 L’Haridon F., Besson-Bard A., Binda M., Serrano M., Abou-Mansour E., Balet F., Schoonbeek H.J., Hess S., Mir R., Leon J., Lamotte O. and Métraux J.P. (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathogens, 7: e1002148.
 Astier J., Rasul S., Koen E., Manzoor H., Besson-Bard A., Lamotte O., Jeandroz S., Durner J., Lindermayr C. and Wendehenne D. (2011) S-nitrosylation: An emerging post-translational protein modification in plants. Plant Science, 181: 527-533.
 Besson-Bard A., Gravot A., Richaud P., Auroy P., Duc C., Gaymard F., Taconnat L., Renou J.-P., Pugin A. and Wendehenne D. (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology, 149: 1302-1315.
 Besson-Bard A., Astier J., Rasul S., Wawer I., Dubreuil-Maurizi C., Jeandroz S. and Wendehenne D. (2009) Current view of nitric oxide-responsive genes in plants. Plant Science, 177: 302-309.
 Besson-Bard A., Griveau S., Bedioui F. and Wendehenne D. (2008) Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. Journal of Experimental Botany, 59: 3407-3414.
 Besson-Bard A., Courtois C., Gauthier A., Dahan J., Dobrowolska G., Jeandroz S., Pugin A. and Wendehenne D. (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signalling. Molecular Plant, 1: 218-228.
 Besson-Bard A., Pugin A. and Wendehenne D. (2008) New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 59: 21-39.
 Courtois C.*, Besson A.*, Dahan J., Bourque S., Dobrowolska G., Pugin A. and Wendehenne D. (2008) Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany, 59: 155-163. *co-first authors
 Lamotte O., Courtois C., Dobrowolska G., Besson A., Pugin A. and Wendehenne D. (2006) Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radical Biology & Medicine, 40: 1369-1376.
 Larmonier N., Mérino D., Nicolas A., Cathelin D., Besson A., Bateman A., Solary E., Martin F., Katsanis E. and Bonnotte B. (2006) Apoptotic, necrotic, or fused tumor cells: An equivalent source of antigen for dendritic cell loading. Apoptosis, 11(9): 1513-1524.

Principaux contrats :

Liens externes,,