Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal UB AgroSup CNRS


AUBERT Gregoire

AUBERT Gregoire
Equipe : Génétique et génomique des Espèces Cibles Protéagineuses
Courriel :
Tel :

Curriculum Vitae

1990 : Ingénieur Agronome ENSA Rennes (Spécialité Amélioration des Plantes)

1990-1992 : Volontaire Aide Technique CIRAD-IRFA Guadeloupe (Vieux-Habitants), Expérimentation culture du fraisier.

1993-Aujourd’hui : Ingénieur d’Etudes INRA Dijon (Station d’Amélioration des Plantes, puis UMRLEG, puis Agroécologie)


Activités de Recherche

Génétique moléculaire des légumineuses (Pois, féverole, lentille). Acquisition et exploitation des ressources génomiques pour ces espèces.


Mots Clés

Génétique moléculaire, Génomique, Génotypage, Légumineuses,Pois, Féverole, Résistance à la bruche.



E. Carrillo-Perdomo, A. Vidal, J. Kreplak, H. Duborjal, M. Leveugle, J. Duarte, C. Desmetz, C. Deulvot, B. Raffiot, P. Marget, N. Tayeh, J. P. Pichon, M. Falque, O. C. Martin, J. Burstin & G. Aubert (2020). Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Scientific Reports, 10(1), 1-14.
Gallardo K., Besson A., Klein A., Le Signor C., Aubert G., Henriet C., Térézol M., Pateyron S., Sanchez M., Trouverie J., Avice J.-C., Larmure A., Salon C., Balzergue S., Burstin J. (2019). Transcriptional reprogramming of pea leaves at early reproductive stages. Front. Plant Sci. 10: 1014
Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Térézol M., Huneau C., Turo C.J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J.-M., Batley J., Le Paslier M.-C., Ellis N., Warkentin T.D., Coyne C.J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. (2019). A reference genome for pea provides insight into legume genome evolution. Nature Genet. 51:1411-1422.
Mieulet D., Aubert G., Bres C., Klein A., Droc G., Vieille E., Rond-Coissieux C., Sanchez M., Dalmais M., Mauxion J.-P., Rothan C., Guiderdoni E., Mercier R. (2018). Unleashing meiotic crossovers in crops. Nature Plants. 4:1010-1016.
Desgroux A., Baudais V.N., Aubert V., Le Roy G., de Larambergue H., Miteul H., Aubert G., Boutet G., Duc G., Baranger A., Burstin J., Manzanares-Dauleux M., Pilet-Nayel M.-L., Bourion V. (2018). Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea. Front. Plant Sci. 8: 2195.
Ligerot Y., de Saint Germain A., Waldie T., Troadec C., Citerne S., Kadakia N., Pillot J.-P., Prigge M., Aubert G., Bendahmane A., Leyser O., Estelle M., Debellé F., Rameau C. (2017). The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS genetics, 13(12), e1007089.
McAdam E.L., Meitzel T., Quittenden L.J., Davidson S.E., Dalmais M., Bendahmane A.I., Thompson R., Smith J.J., Nichols D.S., Urquhart S., Gelinas-Marion A., Aubert G., Ross J.J. (2017). Evidence that auxin is required for normal seed size and starch synthesis in pea. New Phytol. 216:193-204.
Rubenach A., Hecht V., Vander Schoor J.K., Liew L.C., Aubert G., Burstin J., Weller J.L. (2017). Early Flowering 3 redundancy fine-tunes photoperiod sensitivity. Plant Physiol. 173:2254-2264.
Naim-Feil E., Toren M., Aubert G., Rubinstein M., Rosen A., Eshed R., Sherman A., Ophir R., Saranga Y., Abbo S. (2017). Drought response and genetic diversity in Pisum fulvum, a wild relative of domesticated pea. Crop Sci. 57:1-15.
Ridge S., Sussmilch F.C., Hecht V., Vander Schoor J.K., Lee R., Aubert G., Burstin J., Macknight R.C., Wellera J.L. (2016). Identification of LATE BLOOMER2 as a CYCLING DOF FACTOR homolog reveals conserved and divergent features of the flowering response to photoperiod in pea. Plant Cell 28:2545-2559.
Desgroux A., L’Anthoëne V., Roux-Duparque M., Rivière J.-P., Aubert G., Tayeh N., Moussart A., Mangin P., Vetel P., Piriou C., McGee R., Coyne C.J., Burstin J., Baranger A., Manzanares-Dauleux M., Bourion V., Pilet-Nayel M.-L. (2016). Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC genomics. 17: 124
Alves-Carvalho S., Aubert G., Carrère S., Cruaud C., Brochot A.-L., Jacquin F., Klein A., Martin C., Boucherot K., Kreplak J., da Silva C., Moreau S., Gamas P., Wincker P., Gouzy J., Burstin J. (2015) Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 84:1-19.
Tayeh N., Aluome C., Falque M., Jacquin F., Klein A., Chauveau A., Bérard A., Houtin H., Rond C., Kreplak J., Boucherot K., Martin C., Baranger A., Pilet-Nayel M.-L., Warkentin T.D., Brunel D., Marget P., Le Paslier M.-C., Aubert G., Burstin J. The GenoPea 13.2K SNP Array enables a high density and resolution consensus genetic map. Plant J., 84: 1257-1273.
Tayeh N., Klein A., Le Paslier M.-C., Jacquin F., Houtin H., Rond C., Chabert-Martinello M., Magnin-Robert J.-B., Marget P., Aubert G., Burstin J. Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front. Plant Sci., 6:941.


Principaux contrats

Projet Investissement d’Avenir Peamust, ANR Suscrop Profaba, CASDAR Resilens, Consortium Séquençage du génome du pois et de la féverole, IVD LAGOPEDE, PLANT2PRO FINAPEA POSITIF ARECOVER