Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal UB AgroSup CNRS


Luiz DOMEIGNOZ-HORTA (16/12/2016)

Écologie des bactéries N2O réductrices dans les sols agricoles

Le 16 décembre 2016 à 9h30 salle de conférences INRA

Encadrant Laurent PHILIPPOT

Nitrous oxide (N2O) is an important greenhouse gas (GHG) and the main ozone depleting substance. Agricultural soils are the main anthropogenic-induced source of this GHG. The concentration of N2O in the atmosphere is steadily increasing, but we still lack knowledge on the factors controlling its production and consumption in soils. The reduction of N2O to N2 by microorganisms harboring the N2O reductase gene (nosZ) is the only known biological process able to consume this GHG. Recent studies revealed a previously unknown clade of N2O-reducers which was shown to be important to the N2O sink capacity of soils. This thesis seeks to gain a greater understanding on the ecology of N2O-reducers in agricultural soils. A combination of laboratory incubation and field experiments were used to gain knowledge on the importance of N2O-producers and N2O-reducers to the soil N2O production. Additionally, the potential of agricultural practices to modify those microbial communities were assessed. We showed experimentally, in laboratory incubations, that the addition
of a nondenitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, reduced N2O production in 1/3 of the tested soils. Remarkably, after addition of the nosZII strain, some soils became a N2O sink, as negative rates were recorded. This experiment provided unambiguous evidence that the overlooked  non-denitrifying nosZII bacteria can contribute to N2O consumption in soil. Our evaluation of agricultural field experiments showed limited impact of agricultural practices on the microbial communities except for tillage management, and differences observed between an annual and a perennial cropping system.  Increasing tillagemanagement enhanced nosZII diversity. Higher diversity of the nosZII
clade was also observed in the annual cropping system than in the perennial cropping system. Overall, the
recently identified clade of N2O-reducers was more sensitive to environmental variables than the previously known clade (nosZI). The community structure of these two groups was explained by common and uncommon soil properties suggesting niche specialization between the two N2O-reducers. In an attempt to understand the relationship between the microbial communities and process rates, we assessed the potential denitrification and nitrification rates, and in situ N2O emissions. Potential N2O production and potential denitrification activity were used to calculate the denitrification end-product ratio. The diversity of nosZII was negatively related to the N2O:N2 ratio and explained the highest fraction of its variation (26%), while the potential N2O production and potential denitrification activity were mainly explained by the soil properties. To better evaluate the contribution of different factors to the in situ emissions, more than 70000 N2O measurements were subdivided into different ranges, from low to high rates. Interestingly, the low range of in situ N2O emissions was only related to soil pH, while the high ranges were also strongly related to the microbial communities. This result suggests that the “base-line” N2O emissions might be more regulated by soil
edaphic conditions than by microorganisms, the lasts being more important for the high emissions
ranges. Among the significant microbial variables, we found that the diversity of nosZII was negatively related to the high ranges of in situ N2O emissions. In conclusion, our results highlight the relevance of the second clade of N2O reducersto the fate of N2O in soil. Our results also suggest niche differentiation between the
two N2O-reducing clades with nosZII being more responsive to environmental variables. Agricultural practices showed limited impact on the two guilds. Further research is needed to test the niche specialization between the two groups, to disentangle their controlling factors, and to evaluate their potential for N2O mitigation.